Improved Variational Autoencoders for Text Modeling using Dilated Convolutions
نویسندگان
چکیده
Recent work on generative text modeling has found that variational autoencoders (VAE) with LSTM decoders perform worse than simpler LSTM language models (Bowman et al., 2015). This negative result is so far poorly understood, but has been attributed to the propensity of LSTM decoders to ignore conditioning information from the encoder. In this paper, we experiment with a new type of decoder for VAE: a dilated CNN. By changing the decoder’s dilation architecture, we control the size of context from previously generated words. In experiments, we find that there is a trade-off between contextual capacity of the decoder and effective use of encoding information. We show that when carefully managed, VAEs can outperform LSTM language models. We demonstrate perplexity gains on two datasets, representing the first positive language modeling result with VAE. Further, we conduct an in-depth investigation of the use of VAE (with our new decoding architecture) for semi-supervised and unsupervised labeling tasks, demonstrating gains over several strong baselines.
منابع مشابه
Challenges with Variational Autoencoders for Text
We study variational autoencoders for text data to build a generative model that can be used to conditionally generate text. We introduce a mutual information criterion to encourage the model to put semantic information into the latent representation, and compare its efficacy with other tricks explored in literature such as KL divergence cost annealing and word dropout. We compare the log-likel...
متن کاملDilated Convolutions for Modeling Long-Distance Genomic Dependencies
We consider the task of detecting regulatory elements in the human genome directly from raw DNA. Past work has focused on small snippets of DNA, making it difficult to model long-distance dependencies that arise from DNA’s 3-dimensional conformation. In order to study long-distance dependencies, we develop and release a novel dataset for a larger-context modeling task. Using this new data set w...
متن کاملHow to Train Deep Variational Autoencoders and Probabilistic Ladder Networks
Variational autoencoders are a powerful framework for unsupervised learning. However, previous work has been restricted to shallow models with one or two layers of fully factorized stochastic latent variables, limiting the flexibility of the latent representation. We propose three advances in training algorithms of variational autoencoders, for the first time allowing to train deep models of up...
متن کاملSupplementary Material for Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
In the main text we derived Adversarial Variational Bayes (AVB) and demonstrated its usefulness both for black-box Variational Inference and for learning latent variable models. This document contains proofs that were omitted in the main text as well as some further details about the experiments and additional results.
متن کاملSemi-Amortized Variational Autoencoders
Amortized variational inference (AVI) replaces instance-specific local inference with a global inference network. While AVI has enabled efficient training of deep generative models such as variational autoencoders (VAE), recent empirical work suggests that inference networks can produce suboptimal variational parameters. We propose a hybrid approach, to use AVI to initialize the variational par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017